Cyclic Voltammetry of $[CpMo(CO)_3]_2$, $[CpMo-(CO)_2]_2$ and Chalcogenato-bridged Dimolybdenum Complexes $[CpMo(CO)_2(\mu-EPh)]_2$ (E = S, Se, Te)*

PETER JAITNER** and WOLFGANG WINDER

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, 6020 Innsbruck, Austria

(Received November 10, 1986)

Recently we described the syntheses of chalcogenato-bridged compounds $[CpMo(CO)_2(\mu-EPh)]_2$ (E = S, Se, Te) [1]. The X-ray structure of $[CpMo-(CO)_2(\mu-TePh)]_2$ revealed a structure which is analogous with the homologous sulphur compound. The asymmetric molecule contains a convoluted Mo₂Te₂ four membered ring with Mo–Te distances of 2.785– 2.865 Å without a metal-metal bond. The Te···Te distance of 3.24 Å is unexpectedly short compared to the S···S distance of 2.98 Å in $[CpMo(CO)_2-(\mu-SR)]_2$ [2].

Our synthetic studies of this low valent type of complexes are focussed on their electrochemistry. Herein we report electrochemical studies of the bridged thiolato, selenolato and tellurolato complexes $[CpMo(CO)_2(\mu$ -EPh)]_2 as well as of the starting materials $[CpMo(CO)_3]_2$ and $[CpMo(CO)_2]_2$ obtained by cyclic voltammetry.

The presence of Mo-S bonding in a variety of redox enzymes has prompted electrochemical investigations of dimeric Mo-sulfur bonds containing complexes [3]. But no comparative studies of the electrochemical behaviour of the homologous bridged selenolato and tellurolato compounds are reported.

Whilst manganese-carbonyl-thiolate systems exhibit only reversible one-electron oxidation waves [4], molybdenum-carbonyl-thiolate systems as well as phosphido-bridged iron-carbonyl species show two-electron transfers [5].

Figure 1 presents the cyclic voltammogram of the oxidation of the dimeric $[CpMo(CO)_2(\mu\text{-TePh})]_2$ in CH₃CN. The data listed in Table I show that the obtained voltammogramms for the thiolato, selenolato and tellurolato compounds are very similar showing a moderate scan rate dependence and $[Cp-Mo(CO)_2(\mu\text{-TePh})]_2$ seems to be harder to oxidise than the homologous selenium or sulphur com-

водия водия станов станов

Fig. 1. Cyclic voltammogram of $[CpMo(CO)_2(\mu-TePh)]_2$ (5 × 10⁻⁴ M; 0.1 M TBHA; V = 200 mV/s, T = 21 °C; reference electrode Ag/AgCl).

TABLE 1. Peak Potentials for the Oxidation of $[CpMo(CO)_2 - (\mu-EPh)]_2$ (E = S, Se, Te)

Metal	E	Solvent	$E_{\mathbf{pa}_1}$ (mV)	E _{pc1} (mV)	E _{pa2} (mV)
Мо	S	CH ₃ CN CH ₂ Cl ₂	28 42	-15 -5	263 252
Мо	Se	CH ₃ CN CH ₂ Cl ₂	38 169	-13 44	273 477
Мо	Te	CH ₃ CN CH ₂ Cl ₂	82 183	29 77	291 414

All values were obtained at a scan rate of 200 mV/s; supporting electrolyte = 0.1 M TBHA; electroactive species $c = 5 \times 10^{-4}$ M.

pounds. The first oxidation (a_1) step is assigned to a reversible two-electron process as derived from cyclic voltammetry and rotating disk electrode measurements (Pt, 1000 rpm). The second oxidation (a_2) also proceeds by loss of two electrons but exhibits no reversibility.

Electrochemical studies of Mo₂S₂ systems like Mo₂(CO)₈(SR)₂ have been reported recently and show similar behaviour to our title compounds [6]. We attribute the observed electron processes to a CO substitution by CH₃CN of [CpMo(CO)₂-(μ -EPh)]₂ and assign the cathodic peaks a₁ and a₂ to the oxidation of [CpMo(CO)(CH₃CN)(μ -EPh)]₂ and [CpMo(CO)₂(μ -EPh)]₂ respectively. [CpMo-(CO)₂(μ -EPh)]₂ seems to be harder to oxidise than the CH₃CN substituted product [CpMo(CO)(CH₃-CN)(μ -EPh)]₂ (ΔE = 300 mV). McDonald observed a similar value of ΔE = 400 mV in his electrochemical studies of Mo₂(CO)₈(SR)₂ [6].

CV experiments run in CH_2Cl_2 show similar results to those in the more strongly bonding CH_3CN .

^{*}Presented at the Meeting of the Gesellschaft Deutscher Chemiker and Gesellschaft Österreichischer Chemiker in Innsbruck, May 1986.

^{**}Author to whom correspondence should be addressed.

Even here a substitution of CO by CH_2Cl_2 takes place. Coordination of CH_2Cl_2 is confirmed by the electrochemical studies of Pickett and Fletcher of $[Mn(CO)_5CH_2Cl_2]^*$ which is obtained by electrochemical oxidation of $Mn_2(CO)_{10}$ in CH_2Cl_2 [7].

Earlier synthetic studies of our group proved that $[CpMo(CO)_2(\mu-EPh)]_2$ readily undergo partial decarbonylation by heating the solids mildly *in vacuo* (80 °C, 10⁻² mmHg) [1]. The decarbonylated $[CpMo(CO)(\mu-EPh)]_2$ achieve 18 electron configurations by forming a formal double Mo=Mo bond [1, 2]. In agreement with the reported flexibility of the Mo···Mo distance in dimeric organometallic compounds [2], our CV results can be interpreted in terms of a creation of a single metal-metal-bond and structural rearrangement within the binuclear unit upon forming the oxidized products.

The cyclic voltammograms of the single bonded $[CpMo(CO)_3]_2$ (Mo-Mo) and of the triply bonded $[CpMo(CO)_2]_2$ (Mo=Mo) which were used for synthesis of the chalcogenato-bridged dimolybdenum compounds are nearly identical. Cathodic and anodic values of the recently published studies of [CpMo- $(CO)_{3}_{2}$ by Kadish [8] show good agreement with our measurements (Table II). Reductive cleavage of the Mo \equiv Mo triple bond (c₂) is surprisingly easier to obtain than of the single bonded $[CpMo(CO)_3]_2$. The reduction of the cationic species $[CpMo(CO)_n]$ (CH_3CN) ⁺ $(n = 2, 3)(c_2)$ to regenerate [CpMo- $(CO)_3]_2$ or $[CpMo(CO)_2]_2$ occurs for the triply bonded Mo≡Mo at a more negative potential than the single bonded $[CpMo(CO)_3]_2$. Coordinated CH₃-CN seems to be responsible for this shift.

TABLE II. Peak Potentials (mV) for $[CpMo(CO)_3]_2$ and $[CpMo(CO)_2]_2$ in CH₃CN

	$E_{\mathbf{pc}_1}$	E_{pa_1}	E_{pc_2}	Epa2
Mo-Mo	-574	975	-1171	-58
Mo≅Mo	-631	1020 ^a	-1152	-74

^aBroad peak. The corresponding electrode reactions are as follows. a₁: oxidative cleavage $Mo_2 \rightarrow 2Mo^+ + 2e^-$, c₁: reduction $2Mo^+ + 2e^- \rightarrow Mo_2$, c₂: reductive cleavage $Mo_2 + 2e^- \rightarrow 2Mo^-$, a₂: oxidation $2Mo^- \rightarrow Mo_2 + 2e^-$. Mo₂ represents the dimeric Mo-compounds (scan rate $\nu = 200 \text{ mV/s}$; 0.1 M TBHA; $c = 10^{-3}$ M).

Experimental

 $[CpMo(CO)_2(\mu$ -EPh)]_2 were synthesized by our published method [1]. The triply bonded [CpMo-(CO)_2]_2 was prepared by a literature method [9].

All measurements were carried out under dry argon (oxisorb, Messer-Griesheim). Solvents were dried and distilled under N₂. Tetrabutylammonium hexafluorophosphate (TBAH) was purified by double recrystallization from purified methanol and dried under vacuum with P_2O_5 .

Instrumentation

All electrochemical measurements were performed with a potentiostat (Bank-Wenking LT-78), a function generator (Voltage Scan Generator VSG 72), a voltage integrator (Wenking EVI 80) and a xy recorder (Hewlett-Packard 7015 B). The rotating disk electrode was a Metrohm RDE 628. We utilized a three electrode system. This consisted of a Ptring working electrode (Ingold), a glassy carbon counter electrode (Metrohm) and a Ag/AgCl (3 M KCl, Metrohm) reference electrode.

Acknowledgement

Thanks are due to the Fonds zur Förderung der wissenschaftlichen Forschung Vienna, for generous financial support (project 4576, 5159 and 5493).

References

- P. Jaitner, J. Organomet. Chem., 233, 333 (1982); P. Jaitner and W. Wohlgenannt, Inorg. Chim. Acta, 101, L43 (1985); P. Jaitner, W. Wohlgenannt, A. Gieren, H. Betz and T. Hübner, J. Organomet. Chem., 297, 281 (1985).
- 2 I. B. Benson, S. D. Killops, S. A. R. Knox and A. Welch, J. Chem. Soc., Chem. Commun., 1137 (1980).
- L. D. Rosenhein, J. W. McDonald and W. E. Newton, Inorg. Chim. Acta, 87, L33 (1984); L. D. Rosenhein, W. E. Newton and J. W. McDonald, J. Organomet. Chem., 288, C17 (1985); J. Courtot-Coupez, M. Guegen, J. J. E. Guerchais, F. Y. Petillon, J. Talarmin and R. Mercier, J. Organomet. Chem., 312, 81 (1986).
- 4 J. W. McDonald, Inorg. Chem., 24, 1734 (1985).
- 5 J. P. Collmann, R. K. Rothrock, R. G. Finke, E. J. Moore
- and F. Rose-Munch, *Inorg. Chem.*, 21, 146 (1982). 6 B. Zhuang, J. W. McDonald, F. A. Schultz and W. E.
- Newton, Organometallics, 3, 943 (1984). 7 C. J. Pickett and D. J. Fletcher, J. Chem. Soc., Dalton
- Trans., 879 (1975).
 8 K. M. Kadish, D. A. Lacombe and J. E. Anderson, *Inorg. Chem.*, 25, 2246 (1986).
- 9 G. Brauer, 'Handbuch der Anorg. Präp. Chemie', Bd. III, Enke Verlag, Stuttgart, p. 1864.