Cyclic Voltammetry of $[ChMo(CO)₃]_{2}$, $[ChMo (CO)_2$]₂ and Chalcogenato-bridged Dimolybdenum Complexes $[ChMo(CO)₂(\mu-EPh)]₂$ (E = S, Se, Te)*

PETER JAITNER** and WOLFGANG WINDER

Institut fiir Anorganische und Analytische Chemie der Universitiit Innsbruck, Innrain 52a, 6020 Innsbruck, Austria

(Received November 10, 1986)

Recently we described the syntheses of chalcogenato-bridged compounds $[CpMo(CO)₂(\mu-EPh)]₂$ $(E = S, Se, Te)$ [1]. The X-ray structure of [CpMo- $(CO)₂(\mu$ -TePh)]₂ revealed a structure which is analogous with the homologous sulphur compound. The asymmetric molecule contains a convoluted $Mo₂Te₂$ four membered ring with Mo-Te distances of 2.785- 2.865 Å without a metal-metal bond. The $Te^{\cdots}Te$ distance of 3.24 Å is unexpectedly short compared to the S $\cdot\cdot$ -S distance of 2.98 Å in $[CPMo(CO)₂$ - $(\mu$ -SR)]₂ [2].
Our synthetic studies of this low valent type of

complexes are focussed on their electrochemistry. Herein we report electrochemical studies of the bridged thiolato, selenolato and tellurolato complexes $[ChMo(CO)₂(\mu-EPh)]₂$ as well as of the starting materials $[CPMo(CO)₃]₂$ and $[CPMo(CO)₂]₂$ obtained by cyclic voltammetry.

The presence of MO-S bonding in a variety of redox enzymes has prompted electrochemical investigations of dimeric MO-sulfur bonds containing complexes [3]. But no comparative studies of the electrochemical behaviour of the homologous bridg ed selenolato and tellurolato compounds are reported.

Whilst manganese-carbonyl-thiolate systems exhibit only reversible one-electron oxidation waves [4], molybdenum-carbonyl-thiolate systems as well as phosphido-bridged iron-carbonyl species show two-electron transfers [5] .

Figure 1 presents the cyclic voltammogram of the oxidation of the dimeric $[ChMo(CO)₂(\mu-TePh)]₂$ in CH3CN. The data listed in Table I show that the obtained voltammogramms for the thiolato, selenolato and tellurolato compounds are very similar showing a moderate scan rate dependence and [Cp- $Mo(CO)₂(\mu-TePh)₂$ seems to be harder to oxidise than the homologous selenium or sulphur com-

80 A.A **a1 + 0.6V +0.3 0 - 0.3 v**

Fig. 1. Cyclic voltammogram of $[ChMo(CO)₂(\mu-TePh)]₂$ $(5 \times 10^{-4}$ M; 0.1 M TBHA; $V = 200$ mV/s, $T = 21$ °C; reference electrode Ag/AgCl).

TABLE I. Peak Potentials for the Oxidation of [CpMo(CO)₂- $(\mu$ -EPh)]₂ (E = S, Se, Te)

Metal	E	Solvent	$E_{\mathbf{pa}_1}$ (mV)	$E_{\mathbf{p} \mathbf{c}_1}$ (mV)	$E_{\mathbf{pa}_2}$ (mV)
Mo	S	CH ₃ CN CH ₂ Cl ₂	28 42	-15 -5	263 252
Mo	Se	CH ₃ CN CH ₂ Cl ₂	38 169	-13 44	273 477
Mo	Te	CH ₃ CN CH ₂ Cl ₂	82 183	29 77	291 414

All values were obtained at a scan rate of 200 mV/s; supporting electrolyte = 0.1 M TBHA; electroactive species $c = 5 \times$ 10^{-4} M.

pounds. The first oxidation (a_1) step is assigned to a reversible two-electron process as derived from cyclic voltammetry and rotating disk electrode measurements (Pt, 1000 rpm). The second oxidation $(a₂)$ also proceeds by loss of two electrons but exhibits no reversibility.

Electrochemical studies of $Mo₂S₂$ systems like $Mo₂(CO)₈(SR)₂$ have been reported recently and show similar behaviour to our title compounds [6]. We attribute the observed electron processes to a CO substitution by CH_3CN of $[ChMo(CO)_2$ - $(\mu$ -EPh)]₂ and assign the cathodic peaks a₁ and a₂ to the oxidation of $[ChMo(CO)(CH₃CN)(\mu-EPh)]₂$ and $[ChMo(CO)₂(\mu-EPh)]₂$ respectively. $[ChMo (CO)₂(\mu$ -EPh)]₂ seems to be harder to oxidise than the $CH₃CN$ substituted product $[Ch Mo(CO)(CH₃ CN(\mu-EPh)]_2$ ($\Delta E = 300$ mV). McDonald observed a similar value of $\Delta E = 400$ mV in his electrochemical studies of $Mo_2(CO)_8(SR)_2$ [6].

CV experiments run in $CH₂Cl₂$ show similar results to those in the more strongly bonding $CH₃CN$.

^{*}Presented at the Meeting of the Gesellschaft Deutscher Chemiker and Gesellschaft Österreichischer Chemiker in Innsbruck, May 1986.

^{**}Author to whom correspondence should be addrcsscd.

Even here a substitution of CO by CH_2Cl_2 takes place. Coordination of $CH₂Cl₂$ is confirmed by the electrochemical studies of Pickett and Fletcher of $[{\rm Mn}({\rm CO})_5{\rm CH}_2{\rm Cl}_2]^+$ which is obtained by electrochemical oxidation of $Mn_2(CO)_{10}$ in CH_2Cl_2 [7].

Earlier synthetic studies of our group proved that $[CpMo(CO),(u-EPh)]$ readily undergo partial decarbonylation by heating the solids mildly *in* \textit{vacuo} (80 °C, 10^{-2} mmHg) [1]. The decarbonylated $[ChMo(CO)(\mu-EPh)]_2$ achieve 18 electron configurations by forming a formal double Mo=Mo bond [l, 21. In agreement with the reported flexibility of the Mo \cdots Mo distance in dimeric organometallic compounds [2], our CV results can be interpreted in terms of a creation of a single metal-metal-bond and structural rearrangement within the binuclear unit upon forming the oxidized products.

The cyclic voltammograms of the single bonded $[ChMo(CO)₃]$ ₂ (Mo-Mo) and of the triply bonded $[ChMo(CO)_2]_2$ (Mo=Mo) which were used for synthesis of the chalcogenato-bridged dimolybdenum compounds are nearly identical. Cathodic and anodic values of the recently published studies of [CpMo- $(CO)_{3}$, by Kadish [8] show good agreement with our measurements (Table II). Reductive cleavage of the Mo=Mo triple bond (c_2) is surprisingly easier to obtain than of the single bonded $[ChMo(CO)₃]_{2}$. The reduction of the cationic species $[ChMo(CO)_n$ - $(CH_3CN)'$ ($n = 2$, 3)(c₂) to regenerate [CpMo- $(CO)_{3}$ or $[ChMo(CO)_{2}]_{2}$ occurs for the triply bonded $Mo \equiv Mo$ at a more negative potential than the single bonded $[ChMo(CO)_3]_2$. Coordinated CH₃-CN seems to be responsible for this shift.

TABLE II. Peak Potentials (mV) for $[ChMo(CO)_{3}]_{2}$ and $[CPMo(CO)₂]$ ₂ in CH₃CN

	$E_{\rm pc}$	$E_{\mathbf{p}\mathbf{a},\mathbf{b}}$	$E_{\mathbf{p} \mathbf{c}_2}$	$E_{\bf pa_2}$
$Mo-Mo$	-574	975	-1171	-58
Mo≅Mo	-631	1020^{a}	-1152	-74

^aBroad peak. The corresponding electrode reactions are as follows. a_1 : oxidative cleavage $Mo_2 \rightarrow 2Mo^+ + 2e^-$, c₁: reduction $2Mo^+ + 2e^- \rightarrow Mo_2$, c₂: reductive cleavage $Mo_2 + 2e^- \rightarrow$ 2Mo⁻, a₂: oxidation $2Mo^- \rightarrow Mo_2 + 2e^-$. Mo₂ represents the dimeric Mo-compounds (scan rate $v = 200$ mV/s; 0.1 M TBHA; $c = 10^{-3}$ M).

Experimental

 $pMo(CO)_2(\mu-EPh)]_2$ were synthesized by our blished method $[1]$. The triply bonded $[CDMo (CO)_2$, was prepared by a literature method [9].

All measurements were carried out under dry argon (oxisorb, Messer-Griesheim). Solvents were dried and distilled under N_2 . Tetrabutylammonium hexafluorophosphate (TBAH) was purified by double recrystallization from purified methanol and dried under vacuum with P_2O_5 .

Instrumentation

All electrochemical measurements were performed with a potentiostat (Bank-Wenking LT-78), a function generator (Voltage Scan Generator VSG 72), a voltage integrator (Wenking EVI 80) and a xy recorder (Hewlett-Packard 7015 B). The rotating disk electrode was a Metrohm RDE 628. We utilized a three electrode system. This consisted of a Ptring working electrode (Ingold), a glassy carbon counter electrode (Metrohm) and a Ag/AgCl (3 M KCl, Metrohm) reference electrode.

Acknowledgement

Thanks are due to the Fonds zur Förderung der wissenschaftlichen Forschung Vienna, for generous financial support (project 4576 , 5159 and 5493).

References

- 1 P. Jaitner, J. *Organomet. Chem., 233, 333 (1982);* P. Jaitner and W. Wohlgenannt, Inorg. *Chim. Acta, 101, L43 (1985);* P. Jaitner, W. Wohlgenannt, A. Gieren, H. Betz and T. Hiibner, *J. Organomet.* Chem., 297, 281 (1985).
- 2 I. B. Benson, S. D. Killops, S. A. R. Knox and A. Welch, *J. Chem. Sot.,* Chem. *Commun.,* 1137 (1980).
- 3 L. D. Rosenhein, J. W. McDonald and W. E. Newton, Inorg. Chim. Acta, 87, L33 (1984); L. D. Rosenhein, W. E. Newton and J. W. McDonald, J. Organomet. Chem., 288, Cl7 (1985); J. Courtot-Coupez, M. Guegen, J. J. E. Guerchais, F. Y. Petillon, J. Talarmin and R. Mercier, J. *Organomet. Chem., 312, 81 (1986).*
- *4* J. W. McDonald, Inorg. *Chem.,* 24. 1734 (1985).
- 5 J. P. Collmann, R. K. Rothrock. R. G. Finke, E. J. Moore
- and F. Rose-Munch, Inorg. Chem., 21, 146 (1982). 6 B. Zhuang, J. W. McDonald, F. A. Schultz and W. E.
- Newton, *Organometallics, 3, 943* (1984). 7 C. J. Pickett and D. J. Fletcher, *J. Chem. Sot., Dalton*
- *Trans., 879 (1975).* 8 K. M. Kadish, D. A. Lacombe and J. E. Anderson, *Inorg.*
- Chem., 25, 2246 (1986).
- 9 G. Brauer, 'Handbuch der Anorg. Präp. Chemie', Bd. III, Enke Verlag, Stuttgart, p. 1864.